• This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Sun - Fri 8:00 - 20:30
IDTechEx
Pin It

Electrification, autonomy, and vehicle ownership saturation are causing a technological revolution in the automotive sector. These automotive meta-trends are driving drastic changes in electronic component requirements and present a high-volume opportunity for printed electronics to capitalize on.

Historically, printed electronics technologies have nurtured a close relationship with the automotive sector, with printed force sensors pioneering passenger safety through seat occupancy and seatbelt detection. As such, the automotive sector continues to represent the lion's share of the global printed and flexible sensor market, which IDTechEx's report on the topic evaluates as worth US$421M in 2024. However, if the automotive sector is to continue to be a reliable revenue stream, printed electronics technology providers must adapt to address the emerging technical challenges facing future mobility.

Augmenting autonomous vehicles with printed electronics

As vehicle autonomy levels advance, the increasing number and distribution of spatial mapping sensors required will need continuous performance improvements to ensure passenger safety. Emerging printed electronics technologies can augment these sensors, extending detection bandwidth and maximizing reliability during operation.

Transparent conductive films (TCFs) are being developed to heat and defog LiDAR sensor panels, ensuring the function is unperturbed by external environmental conditions. Properties such as high transparency and low haze are important for defogging. These properties can be easily tuned using the wide variety of material options available for TCFs, including carbon nanotubes and silver nanowires.

IDTechEx identifies printed heating as a leading application of transparent conductive films. This is attributed to diminishing growth prospects in capacitive touch sensing applications. Innovations in thin film coating techniques have enabled indium tin oxide (ITO) to dominate touch sensing applications, all but displacing TCFs completely.

Looking towards the future, printed electronics technologies could play a more active role in advanced autonomous driving. Emerging semiconductive materials, such as quantum dots, printed directly onto conventional silicon image sensor arrays can extend detection range and sensitivity deeper into the infrared region. Augmenting existing image sensor technology with enhanced spectral range could facilitate the competition of hybrid silicon sensors with established InGaAs detectors.

For more information, please visit www.IDTechEx.com.

Company Name: IDTechEx
About Company: IDTechEx provides trusted independent research on emerging technologies and their markets. Since 1999, we have been helping our clients to understand new technologies, their supply chains, market requirements, opportunities and forecasts.